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A model is presented to predict the orientation and concentration state of a semi-
dilute, rigid fibre suspension in a plane channel flow. A probability distribution
function is used to describe the local orientation and concentration states of the
suspension and evolves according to a Fokker–Planck equation. The fibres are free
to interact with each other hydrodynamically and are modelled using the approach
outlined by Folgar & Tucker (J. Reinf. Plast. Comp. vol. 3, 1984, p. 98). Near the
channel walls, the no-flux boundary conditions as proposed by Schiek & Shaqfeh
(J. Fluid Mech. vol. 296, 1995, p. 271) are applied on the orientation distribution
function. With this approach, geometric constraints are used to couple the fibres’
rotary motion with their translational motion. This eliminates physically unrealistic
orientation states in the near-wall region. The concentration distribution is modelled
in a similar manner to that proposed by Ma & Graham (Phys. Fluids vol. 17,
2005, art. 083103). A two-way coupling between the fibre orientation state and
the momentum equations of the suspending fluid is considered. Experiments are
performed to validate the numerical model by visualizing the motion of tracer fibres
in an index-of-refraction matched suspension. The orientation distribution function
is determined experimentally based on these observations of fibre motion and a
comparison is made with the model predictions. Good agreement is shown particularly
near the channel walls. The results indicate that at distances less than one-half of
a fibre length from the channel walls, the model accurately predicts the available
fibre orientation states and the distribution of fibres amongst these states. The model
further predicts a large concentration gradient in this region that is also observed
experimentally. The magnitude of the concentration gradient in the near-wall region
is shown to increase with increasing fibre concentration.

1. Introduction
In this work, we study the near-wall behaviour of rigid non-Brownian fibre

suspensions flowing through a rectangular channel; see figure 1. The case considered
here is for flow with semi-dilute suspensions consisting of rigid rods suspended in
a viscous, Newtonian fluid. Here, semi-dilute is defined such that 1 � nL3 � r , where
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Figure 1. The channel geometry and fibre orientation angles used in this study. The large
arrows indicate the direction of the flow.

n is the number of fibres per unit volume, L is the fibre length and r is the fibre
aspect ratio, that is, the ratio of fibre length to its diameter. The Reynolds number
considered here based on the length of the fibre is asymptotically small.

Fibre suspension flows play an important role in many industrial processes. During
processing, fibre orientation can determine the quality of the final products, for
example in paper-making, composite materials manufacturing and the electrospinning
of nano-fibres. It has also been established that the transport, suspension rheology
and flow field respond to the orientation and concentration state of the suspension
(e.g. Batchelor 1970; Cox 1970; VerWeyst & Tucker 2002; Lipscomb & Denn 1988).
It is widely known that fibres suspended in a fluid undergo mean motion because of
the fluid velocity and random motions due to hydrodynamic fibre–fibre interactions.

Early theoretical developments in fibre suspension rheology have shown that the
rotary motion of a single, freely suspended fibre in a moving fluid depends entirely
on the local velocity gradients in the flow. Jeffery (1922) was the first to formally
prove this relationship. By using a no-slip boundary condition along the surface of a
fibre and matching the velocity field in the region near the fibre to the bulk flow field
of the suspending medium, Jeffery derived an expression for the angular velocity of
an isolated fibre. His derivation showed that a single fibre will rotate continuously
in one of an infinite set of closed orbits around the vorticity axis. Bretherton (1962)
advanced the argument that Jeffery’s equations apply to cylindrical particles if the
particle aspect ratio r is replaced by an effective aspect ratio. This was confirmed
experimentally by Goldsmith & Mason (1962).

Jeffery’s classic analysis is limited to the infinitely dilute case. As the fibre
concentration increases, deviations are observed from Jeffery’s predictions. The
discrepancy stems from the fact that fibres interact hydrodynamically with
neighbouring fibres at distances on the order of a fibre length. Folgar & Tucker
(1984) addressed this issue by modelling hydrodynamic fibre–fibre interactions as a
diffusional process and defined an empirically determined rotary diffusion coefficient
Dr . They proposed, through a simple dimensional analysis, a relationship in which
Dr is linearly proportional to the magnitude of the rate of strain tensor ‖E‖

Dr = CI ‖E‖, (1.1)

where CI is traditionally called the interaction coefficient and is related to suspension
parameters such as concentration, aspect ratio and fibre length. It should be noted
that (1.1) implies isotropic diffusion. Ranganathan & Advani (1991) challenged the
utility of this approach. They used the Folgar–Tucker model to relate the interaction
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coefficient, CI , to the average interparticle spacing in non-dilute suspensions. They
found a strong dependence between CI and the orientation state of the suspension.
Specifically, by fitting the experimental data of Folgar (1983) for nL3 = 52.2, they
found that CI was an order of magnitude larger when the suspension was in an
isotropic orientation state compared to that in an aligned orientation state. This
phenomenon however was not found to be significant when nL3 = 26. What these
studies did show was an orientation state dependence of the interaction coefficient
at higher concentrations. The findings of Ranganathan & Advani (1991) spurred the
derivation of more complex models for the rotary diffusion coefficient; see for example
Koch (1995) or Phelps & Tucker (2009). While these models have the potential to
improve the accuracy of fibre orientation estimates, they are computationally more
intensive due to the introduction of higher-order orientation tensors. Furthermore,
these models require additional closure parameters whose values are not typically
available a priori.

In a similar manner, hydrodynamic fibre–fibre interactions cause deviations to the
translational motion of fibres (e.g. Kim 1986; Stover 1991). Here, the interactions
create disturbances that seemingly mimic a diffusional process. Rahnama et al.
(1993) derived an expression for the hydrodynamic translational diffusion in dilute
suspensions by computing an ensemble average of two-body interactions. While two-
body interactions apply only to dilute suspensions, they were able to extend the dilute
relationship to the semi-dilute regime by accounting for hydrodynamic screening,
i.e. a reduction in the spatial range through which fibre–fibre interactions propagate
throughout the suspension. Using the experimental data of Anczurowski & Mason
(1968), they derived the following expression for the translational diffusion coefficient
in the wall-normal direction:

Dt = 1.7 × 10−2 nL3L2

r ln ζ/a
‖E‖, (1.2)

where a is the fibre radius and ζ is defined in terms of the fibre volume fraction, c,
as ζ = (nL)1/2 ln1/2(1/c)). The key finding of this work is that Dt should increase with
increasing fibre concentration.

It is well understood that the local flow field plays a fundamental role in determining
the motion of suspended fibres. However, the flow of fibre suspensions differs
considerably from the flow of a pure fluid. The earliest reports of this were made by
Forgacs, Robertson & Mason (1958). They showed that the flow of semi-dilute fibre
suspensions can be classified by one of three distinct regimes depending on the velocity
of the suspension. At very low velocity, they report a plug-flow with no movement
of fibres relative to one another and a thin water layer near the walls. Furthermore,
velocity gradients were only found to exist within this water layer. At higher velocities,
they report that the wall layer becomes unstable and a turbulent annulus forms that
begins to break up the plug. They termed this the mixed flow regime. At high velocity,
the flow becomes fully turbulent and the fibre network breaks up leaving turbulent
flow across the entire channel. In a more recent study, Xu & Aidun (2005) measured
velocity profiles arising from the flow of semi-dilute fibre suspensions through a
rectangular channel using pulsed ultrasound Doppler velocimetry (PUDV). They
varied both the fibre concentration and the Reynolds number and determined the
effect of each on the flow profile. At low Reynolds number, they showed that as
the fibre concentration increased, the velocity profile changes from a parabolic to a
plug-type velocity distribution. The size of the plug region was also found to increase
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with fibre concentration. When in this state, they argued that the fibres form an
‘interlocking coherent network’ in the central part of the channel with a thin liquid
layer between the plug and the wall. This fibre network was believed to increase
the momentum transfer between the fluid and fibre phase. A similar phenomenon
was observed by Heath et al. (2007), who experimentally studied the flow of a 0.4 %
mass concentration pulp suspension through an axisymmetric 1:5 sudden expansion.
They found that for a mean velocity, U ≈ 0.5 m s−1, the suspension moved as a
plug far beyond the expansion with a plug-like concentration distribution. Velocity
profiles were also measured and showed a similar, plug-like velocity distribution.
At higher velocities, specifically when 0.7 m s−1 � U � 0.9 m s−1, concentration profile
measurements showed that the plug region had been fluidized, and a more uniform
concentration distribution was observed. However, PUDV measurements revealed
that the suspension flowed with a plug-like velocity distribution despite having a
more even spatial distribution of the fibres.

It is also understood that suspension flows are coupled to the orientation state
through its rheology. The first to address this issue theoretically was Batchelor (1970),
who developed a general constitutive equation for the bulk stress in a suspension of
rigid, inertialess particles of arbitrary shape in a Newtonian fluid. By representing a
single particle in suspension as a distribution of Stokeslets over a line enclosed by
the particle body, Batchelor determined expressions for the resultant force required
to sustain translational motion and the resultant couple required to sustain rotational
motion. Dinh & Armstrong (1984) extended Batchelor’s theory to account for the
orientation state of elongated particles and its effect on the bulk stress within
the suspension. This was accomplished by assuming that the orientation state of
the suspension can be completely described by a known orientation distribution
function, ψ , such that the probability of finding fibres oriented between the angles φ

and φ + ∂φ is ψ(φ)∂φ. By linearizing the flow field around the particle they were able
to equate Batchelor’s constitutive equation to a new constitutive equation: one that is
proportional to the fourth-order moment tensor of ψ . The proportionality constant
is referred to as the effective viscosity of the suspension. Bibbo, Dinh & Armstrong
(1985) validated the work of Dinh & Armstrong (1984) by experimentally measuring
the shear stress within a semi-concentrated suspension undergoing a simple shear flow.
Their measurements demonstrated a strong coupling between fibre alignment and the
resulting shear stress within the suspension and that the Dinh–Armstrong model
was suitable for predicting the additional fibre stress. Using numerical techniques,
Mackaplow & Shaqfeh (1996) derived expressions for the effective viscosity of dilute
and semi-dilute suspensions of rods in a Newtonian fluid. For semi-dilute fibre
suspensions, they express the fibre stress as follows:

τ fibre = µf E : (〈 pppp〉 − I〈 pp〉), (1.3)

where 〈 pppp〉 and 〈 pp〉 are the fourth- and second-order moments of the orientation
distribution function ψ with respect to the orientation vector p. These are often
referred to as the fourth- and second-order orientation tensors, respectively, and are
defined as

〈 pppp〉 =

∫
pipjpkplψd p, 〈 pp〉 =

∫
pipjψd p, (1.4)
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where p is a unit vector pointing in the direction parallel to the axis of the fibre,
that is

p =

⎡⎢⎣ cos φ sin θ

sinφ sin θ

cos θ

⎤⎥⎦ , (1.5)

where φ is the projected angle of the fibre in the xy-plane and θ is the angle between
the fibre and the z-axis; see figure 1. In (1.3), I is the unit tensor and µf is the effective
viscosity of the suspending fluid defined as

µf

µ
=

πnL3

6 ln(2r)
Q(ε) + A

πn2L6

3 ln3(2r)
, (1.6)

where µ is the Newtonian fluid viscosity, ε =1/ ln(2r) and Q(ε) is an O(ε2) correction
factor, which Batchelor (1971) defined for circular cylinders as follows:

Q(ε) =
1 + 0.64ε

1 − 1.5ε
+ 1.659ε2. (1.7)

Finally, A in (1.6) is a constant that depends on the orientation state of the
suspension. For an isotropic orientation distribution, Aiso =0.222, whereas for an
aligned suspension, Aal = 0.206.

The second- and fourth-order orientation tensors, 〈 pp〉 and 〈 pppp〉, can be
computed using one of two general descriptions of fibre orientation, namely the
Eulerian and the Lagrangian methods. With the Lagrangian method, the equations
of motion are solved for each fibre in the suspension for a given velocity
field. Upon computing a statistically significant number of fibre trajectories, an
orientation distribution function can be determined from which 〈 pp〉 and 〈 pppp〉
can be computed. The Lagrangian method can be quite accurate, however it is
computationally intensive, particularly for non-dilute suspensions. For example,
Gillissen et al. (2007) showed that the computational time required to gain a
statistically significant number of fibre trajectories using the Lagrangian method
in conjunction with a direct numerical simulation of the fluid flow at a Reynolds
number of Re = 360 would be in excess of 100 years on a 2 GHz processor. With the
Eulerian description, the suspension is treated as a continuous phase and the position
and orientation of the fibres are described by a probability density function. The main
advantage of the Eulerian method is that it is computationally more efficient than
particle-level simulations and can easily handle the complex fibre–fibre interactions
and the two-way coupling between the flow field and the fibre orientation state.
However, the Eulerian method does have a number of shortcomings. Specifically,
the Eulerian method is unable to model accurately mechanical interactions of the
fibres, either with walls or with other fibres in the suspension. Another issue is
that the Eulerian method cannot describe the detailed motion of any individual
fibre. For example, it is common to find real fibres in a so-called flipping state, i.e.
fibres that rotate continuously by 180◦ about their centre. However, only a small
O(1/r) fraction of the fibres will be found in a flipping state at any given time
(Rahnama, Koch & Shaqfeh 1995b). As a result, resolving such detailed phenomena
will not improve significantly the description of the fibre suspension but will add
an enormous computational cost. In fact, the Eulerian method is able to predict the
state of a suspension adequately for most engineering applications. With the Eulerian
description, the probability density of fibres having orientation p and position r
at time t is denoted as Ψ (r, p, t). The convection-diffusion model that governs the
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evolution of Ψ is given by, e.g. Olson et al. (2004),

∂Ψ

∂t
= Dr∇2

rΨ − ∇r · (ωΨ ) + Dt∇2Ψ − ∇ · (VΨ ), (1.8)

where V is the mean translational velocity of the fibres, ω is the fibres angular velocity
and ∇r is the rotational operator expressed as

∇r = p × ∂

∂ p
. (1.9)

The angular velocity of the fibre, ω, is related to the fibres rotational vector by the
following expression:

ω = p × ṗ. (1.10)

A number of research groups often neglect both the translational diffusivity and the
translational velocity of the fibres and assume that fibres are uniformly distributed
throughout the domain and translate strictly along streamlines (e.g. Leal & Hinch
1971; Folgar & Tucker 1984; Altan et al. 1989; Koch 1995; Lin & Zhang 2002;
Parsheh, Brown & Aidun 2005). This simplification is well justified for unbounded
flows, or when computing Ψ far enough away from channel walls. However, this
simplification can lead to inaccuracies near solid walls. To highlight this, if 0 < Dt � 1,
to leading order the model cannot resolve the behaviour near solid boundaries as the
highest-order derivative has been neglected.

Neglecting the fibres cross-streamline translational velocity can also lead to
erroneous results, particularly near walls. For example, Leighton & Acrivos (1987)
demonstrate a curious phenomenon where the effective viscosity of a concentrated
suspension of neutrally buoyant, non-Brownian spheres decreases over time when
subject to a constant strain rate. They showed that this drift in the effective viscosity
was the result of particles migrating out of the shearing planes and into a reservoir
containing the stagnant part of the suspension. Associated with this particle migration
was a decrease in particle concentration in the shearing planes. They argued that
particle migration stems from an irreversible hydrodynamic coupling between the
particles and the fluid, which leads to particle migration from regions of high to low
shear stress. Phillips et al. (1992) extended the work of Leighton & Acrivos (1987)
by deriving a constitutive equation for the shear-induced migration of spherical
particles in concentrated suspensions. Their model includes the effect of spatially
varying particle–particle interactions and the effect of spatially varying viscosity.
They show that the particle–particle interactions scale with the local strain rate,
while the viscosity-induced migration scales with the variation of the local effective
viscosity. This model was coupled to the fluid flow equations and estimates were made
of both the concentration distribution and velocity profile in a Couette flow. Their
predictions were shown to agree very well with experimental measurements of the
particle concentration in a Couette flow device. Specifically, the particle concentration
was found to be lowest in the near-wall region and increased monotonically to a
maximum value near the central core of the flow.

A similar phenomenon is also known to occur with the flow of orientable polymer
suspensions. In this case, polymers have been observed to migrate away from walls
resulting in a so-called depletion zone (e.g. Agarwal, Dutta & Mashelkar 1994 and
the references therein). As with non-Brownian particles, one of the key mechanisms
responsible for polymer migration is believed to be a strong coupling between the
local polymer concentration, effective viscosity and the velocity field, i.e. hydrodynamic
interactions between particles and fluid. With this in mind, Ma & Graham (2005)
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derived an expression for the centre-of-mass migration velocity of orientable polymer
molecules normal to the wall. Using a bead–spring dumbbell model for the polymer,
they showed that to leading order, the migration velocity vmig is estimated as

vmig =
3

64πµn

(
N1(y) − N2(y)

y2
+

N1(H − y) − N2(H − y)

(H − y)2

)
, (1.11)

where y is the perpendicular distance from the wall, and N1 and N2 are the first and
second normal polymer stress differences defined as

N1 = τ f
xx − τ f

yy, N2 = τ f
yy − τ f

zz. (1.12)

An evolution equation governing the centre-of-mass probability distribution, i.e.
the local ‘concentration’ distribution, n(r, t), can be extracted from (1.8) by
integrating (1.8) over p, enforcing periodic boundary conditions in Ψ , i.e.
∂Ψ /(∂φφ=−π/2) = ∂Ψ /(∂φφ=π/2) and defining

Ψ (r, p, t) = n(r, t)ψ(r, p, t), (1.13)

n(r, t) =

∫
Ψ (r, p, t)d p. (1.14)

This results in the following governing equation for the centre-of-mass probability
distribution, n(r, t):

∂n

∂t
= ∇ · (Dt∇n − V n) (1.15)

subject to the no-flux boundary condition at the channel walls, i.e.

Dt∇n − V n = 0. (1.16)

Experimental evidence has demonstrated that the rotational behaviour of orientable
particles is quite different near solid boundaries compared with its behaviour in
central parts of a channel. Stover & Cohen (1990) appear to be the first to rigorously
address this issue experimentally. In their studies, the motion of rodlike particles
in a low-Reynolds-number plane Poiseuille flow was observed experimentally and
the effect of the wall on the period of fibre rotation was determined. They found
that when particles with a high Jeffery orbit constant, that is particles with a large
period of rotation about the vorticity axis, came within a distance less than half a
fibre length from the wall, an irreversible interaction between the fibre and the wall
occurred where the fibre was said to ‘pole-vault’ away from the wall to a distance
of approximately half a fibre length. This interaction was named accordingly as it
seemingly mimicked the flipping motion of a pole-vaulter. Yet, the fibre was said
to never actually touch the wall but rather that the fibre tip would come within
approximately one fibre diameter from the wall. They suggested the existence of some
non-hydrodynamic force between the fibre and the wall but could not determine the
exact nature of this interaction. They observed quite a different behaviour for fibres
with a low Jeffery orbit constant that came within a half-fibre length from the wall. In
this case, the fibre remained close to the wall indefinitely. If the fibre had a period of
rotation somewhere between these extremes, it shifted its orientation away from the
wall. In studies by Moses, Advani & Reinhardt (2001), the rotational and translational
motion of a single fibre near a solid boundary was measured experimentally in simple
shear. These studies showed that for locations less than a fibre length from the wall,
fibres rotate to position themselves parallel to the wall and remain in this orientation
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indefinitely. They concluded that for these fibres, the wall has a stabilizing effect on
the fibre.

Capturing the unique, near-wall behaviour of fibre suspensions using an Eulerian
description is not a trivial matter. The simplest, and most easily satisfied wall boundary
condition for ψ is a simple no-flux condition, i.e. fibres, and hence ψ cannot be
carried through solid walls. This condition is naturally satisfied by the no-slip and no-
penetration conditions for the fluid along a wall. Furthermore, it is both sensible and
straightforward to apply this condition to spherical particles. However, for elongated,
orientable particles, the no-flux condition is not so simple. For example, if the centre
of a fibre is positioned at a distance less than half of its length away from a wall,
the fibre is not free to assume all possible orientations since some configurations
would place one end of the fibre inside the wall. This suggests the existence of
a set of forbidden orientation states, i.e. those orientations that are non-physical.
The basis for this condition lies in the impenetrability of a rigid particle through
a solid wall. ? present a general framework for the construction of the near-wall
boundary conditions based on the impenetrability condition. These rigorous boundary
conditions were later implemented by Schiek & Shaqfeh (1995) to study the flow of
non-dilute, Brownian suspensions. It was shown that the surface over which the zero-
flux boundary condition must be satisfied is not simply that of the wall, but rather
a complex hypersurface that forbids any part of the fibre from penetrating the wall.
Explicitly, the near-wall boundary conditions can be expressed as follows:

n · ( j r + j t ) = 0 (1.17)

where n is the local, unit normal to the hypersurface separating the allowed and
forbidden fibre orientation states. j r and j t are respectively the rotational and
translational fluxes of the probability density function, ψ , i.e.

j t = Dt∇ψ − (V ψ), (1.18)

j r = Dr∇rψ − (ω ψ). (1.19)

In words, (1.17) states that any rotational flux that places one end of the fibre into the
wall must be balanced by a translation flux that moves the centre of the fibre away
from the wall. It should be pointed out, however, that these boundary conditions
alone do not necessarily include hydrodynamic interactions with the wall, but rather
consider the steric depletion of allowable orientation states only. Using a non-local
theory for the polymer stress and the rigorous no-flux boundary conditions described
above, Schiek & Shaqfeh (1995) show that Ψ changes rapidly over the length of a
fibre as it approaches the wall. In their calculations, the rotary Péclet number, that
is the ratio of strain rate to rotary diffusion, was of order 1. This rapid variation in
Ψ implies that fibres experience a rapid variation in the concentration field and in
the Brownian force and torque in this near-wall region. They showed a near-linear
increase in the concentration distribution with small deviations as the Péclet number
increased. Nitsche & Roy (1996) used the rigorous near-wall boundary conditions
on Ψ along with hydrodynamic wall interactions to investigate relationships between
wall effects and configurational distributions of Brownian suspensions at small Péclet
numbers. Independent calculations were performed using a bead–spring dumbbell
model, and for spheroid-type particle, solutions were obtained using a perturbation
expansion with respect to the Péclet number. They concluded that steric effects of
the wall act to impede shear-induced alignment while hydrodynamic wall interactions
increase angular variation through an effective increase in the local rotary Péclet
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number. They further showed that higher-order terms in the perturbation expansion
create deviations in the orientation and concentration distributions, similar to those
showed by Schiek & Shaqfeh (1995).

In recent years, there has been a redeveloped interest in fibre suspension flows in
relationship to turbulent drag reduction. For example, the numerical predictions of
Paschkewitz et al. (2004) show that turbulent drag could be reduced by as much as
26 % when non-Brownian fibres are added to a flow. Their numerical simulations
further showed that the mechanism responsible for these reductions in drag
stems from near-wall interactions between the fibre and fluid phases. More specifically,
it was concluded that velocity fluctuations in the wall-normal direction are reduced,
while streamwise fluctuations and vorticity are simultaneously increased. These
findings would suggest that the near-wall interactions between the fluid and fibre
phases is critical to the turbulent drag reduction phenomenon.

This paper investigates the translational and rotational behaviours of rigid,
non-Brownian fibres near solid walls in Poisieulle flow. To do so, we use the
rigorous formulation of the no-flux boundary conditions described by Schiek &
Shaqfeh (1995) to constrain fibre orientation near the channel walls along with the
hydrodynamic fibre–wall interaction model described by Ma & Graham (2005) to
predict fibre migration in the wall-normal direction. A comparison is made between
numerical estimates of the local orientation and concentration distributions with
experimental measurements at three different concentrations, i.e. nL3 = 3.6, nL3 = 10.8
and nL3 = 15.0. The model is then used to predict the velocity profiles arising from the
fibre suspension flow through a rectangular channel, and these calculations are then
compared to the experimental results of Xu & Aidun (2005). In § 2, we formulate the
numerical model along with a derivation of the boundary conditions as they apply
to this particular flow. In § 3, we measure the orientation distribution of tracer fibres
in an index-of-refraction matched solution of rigid glass rods suspended in a viscous
Newtonian fluid as a function of distance across the channel. The results of this study
along with a discussion thereof are given in § 4.

2. Problem formulation
In this section, the model equations are presented and applied specifically to the

rectangular channel shown in figure 1. The following assumptions are made in the
analysis outlined below:

(a) The fibres are assumed to be neutrally buoyant.
(b) Hydrodynamic fibre–fibre interactions are assumed to result in an isotropic

rotational diffusivity as modelled by (1.1). This relationship for Dr is applied to the
entire flow domain and is assumed to be unmodified close to the walls.

(c) The translational motion of the fibres normal to the flow direction is assumed
to be the result of shear-induced migration and random motions resulting from
hydrodynamic fibre–fibre interactions.

(d) Flow through the channel is assumed to be two-dimensional and a planar model
of fibre orientation is considered where each fibre is assumed to be oriented in the
xy-plane with an orientation described by the single angle φ. With this assumption,
the fibre orientation vector in the xy-plane is defined as follows:

p =

[
cos φ

sinφ

]
. (2.1)
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(e) The flow field is coupled to the fibre phase through (1.3) throughout the entire
domain. Local variation to τ f near solid boundaries is the result of changes in the
local concentration and orientation states.

The problem is non-dimensionalized by the fibre length L and the centreline fluid
velocity uCL, which result in the following dimensionless variables:

z = y/L, λ = H/L, U = u/uCL,
∂U

∂z
=

L

uCL

∂u

∂y
,

Re =
ρuCLL

µ
, P =

P

ρu2
CL

, P et =
LuCL

Dt

, P er =
uCL

LDr

,

where Pet and Per are the translational and rotational Péclet numbers, respectively.
The normalized concentration is defined as n= nL3η(z), where η(z) is used to
characterize the variation in concentration across the channel and is defined such
that 0 � η(z) � 1.

2.1. Flow evolution model

The flow is described in the channel using Cauchy’s momentum equations for a
steady, quasi-one-dimensional, incompressible, Newtonian fluid, that is

∇ · U = 0, (2.2)

U · ∇U = −∇P +
1

Re
∇ · τ, (2.3)

where τ is the stress tensor, which is the sum of both the Newtonian fluid and fibre
contributions

τ = µ(∇U + ∇UT) + τ fibre . (2.4)

The contribution from the fibre phase to the total stress in the suspension flow is
given by (1.3). It depends on the local orientation and concentration state of the
suspension which is described by the probability density function Ψ . The models for
fibre concentration and orientation are described in the following sections.

2.2. Fibre concentration model

The dimensionless concentration distribution across the channel, n(r, t), evolves
according (1.15) where the migration velocity, vmig , is modelled according to
Ma & Graham (2005). Combining (1.3)–(1.7), (1.11), (1.12) and (1.15), integrating
once with respect to z and applying the boundary condition given by (1.16) results in
the non-dimensional model equations for the steady-state concentration distribution
across the channel:

0 =
1

Pet

∂η

∂z
+

K̂(z)

z2
η +

K̂(λ − z)

(λ − z)2
η (2.5)

with boundary conditions

η(0) = 0, (2.6)

η(λ/2) = 1, (2.7)

where K̂ is defined as

K̂ =
uCL

L
K, (2.8)

where

K(z) =

(
πnµ

6 ln(2r)
Q(ε) + A

πn2µ

3 ln3(2r)

)
∆(z)

n
(2.9)
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Figure 2. Variation of E : (〈 pppp〉 − I〈 pp〉) across the channel. The concentration shown
here is nL3 = 10.8.

and

∆ = E : (〈 pppp〉 − I〈 pp〉)11 − 2E : (〈 pppp〉 − I〈 pp〉)22. (2.10)

Before a solution to (2.5) is given, it is instructive to present first an example of the
11/xx, 22/yy components of E : (〈 pppp〉−I〈 pp〉) along with ∆(z). These are plotted in
figure 2. The exact solution to (2.5), based on the peak near-wall value of ∆(z = 0.5),
is

η(z) =

Q(ε)

6 ln(2r)
exp

(
− Q(ε)

6 ln(2r)
Ld

(
1

z
+

1

λ − z
− λ

4

))
Q(ε)

6 ln(2r)
+

Aiso

3 ln3(2r)

(
1 − exp

(
− Q(ε)

6 ln(2r)
Ld

(
1

z
+

1

λ − z
− λ

4

))) (2.11)

where

Ld = ∆wallPet (2.12)

Nomenclature similar to that of Ma & Graham (2005) is used here, where their
definition of Ld corresponds to the depletion layer thickness. This is not necessarily
the case here, where we simply define the term Ld , i.e. (2.12), to obtain a less
cumbersome closed form solution for n and one that more closely resembles that
of Ma & Graham (2005). Furthermore, concentration-specific solutions are obtained
using the peak, near-wall value of ∆, i.e. at z = 0.5, the one-half fibre length distance
from the wall, and then fitting Pet such that the analytic solution matches the
experimental measurements. We could have chosen an arbitrary value for ∆ and
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fitted Pet according to this arbitrary value. So, in essence, we are fitting the parameter
Ld to the experimental measurements. However, we proceed by using ∆ evaluated
at the half fibre length distance from the wall in order to follow some systematic
approach.

2.3. Fibre orientation model

An exact equation for ψ can be derived from (1.8) using the definition of Ψ . However,
the resulting equation is highly nonlinear and particularly difficult, if not impossible
to solve. Therefore, we use an approach similar to that of Ma & Graham (2005) and
employ a traditional model of fibre orientation (e.g. Leal & Hinch 1971; Folgar &
Tucker 1984; Altan et al. 1989; Koch 1995; Lin & Zhang 2002; Parsheh et al. 2005).
For a fully developed flow in the x-direction, ψ evolves according to a Fokker–Planck
equation, i.e.

1

Pet

∂2ψ

∂z2
=

∂(φ̇ψ)

∂φ
− 1

Per

∂2ψ

∂φ2
. (2.13)

Olson et al. (2004) derived the following relationship for the angular velocity of the
fibre in the xy-plane:

φ̇ = −∂U

∂z
sin2(φ). (2.14)

Equation (2.14) is general for a fibre rotating in a linear field and is identical to that
derived by Jeffery (1922) for fibres of a large aspect ratio. Six boundary conditions
are required in order to obtain an exact solution to (2.13). Since the ends of a fibre
are indistinguishable, periodic boundary conditions are enforced with respect to the
orientation angle, φ, i.e.

ψ(z, φ) = ψ(z, φ + π), (2.15)

∂ψ

∂φ
(z, φ) =

∂ψ

∂φ
(z, φ + π). (2.16)

Since ψ is a distribution function, a third boundary condition stems from a
normalization constraint (given a fibre is found at the point z), i.e.∫ φ2(z)

φ1(z)

ψ(z, φ)dφ = 1, (2.17)

φ1(z) =

⎧⎪⎨⎪⎩
−π/2, z � 0.5, z � λ − 0.5,

arcsin(z), z � 0.5,

arcsin(λ − z), z � λ − 0.5,

(2.18)

φ2(z) =

⎧⎪⎨⎪⎩
π/2, z � 0.5, and z � λ − 0.5,

arcsin(−z), z � 0.5,

arcsin(z − λ), z � λ − 0.5.

(2.19)

The remaining four boundary conditions result from the no-flux condition on ψ near
the channel walls. For the geometry and assumptions considered here, the no-flux
condition at the channel walls is expressed as follows:

1

Pet

∂ψ

∂z
±

(
φ̇ψ − 1

Per

∂ψ

∂φ

)
= 0 (2.20)
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Figure 3. Coupling between translational and rotational motions at a solid boundary.

on z = ±0.5 sin φ, and

1

Pet

∂ψ

∂z
∓

(
φ̇ψ − 1

Per

∂ψ

∂φ

)
= 0 (2.21)

on z = λ ∓ 0.5 sin φ

It should be pointed out that the migration velocity is not included in the near-wall
boundary conditions for ψ since the relationship derived by Ma & Graham (2005),
i.e. (1.11), represents an average over all orientation states. Therefore, it would not
be sensible to include this term here, where there is a strong dependence on fibre
orientation. To reiterate, the conditions defined by (2.20) and (2.21) state that for a
fibre in contact with a wall, translational and rotational motions must be coupled in
order to prevent a fibre from rotating or translating through the wall; see figure 3.

2.4. Numerical implementation

Numerical computations are carried out for the flow of semi-dilute fibre suspensions
of concentration nL3 = 3.6, 10.8 and 15.0. The channel geometry is shown in figure 1
where we use a channel height, λ=10. On the basis of the measurements of Krochak,
Martinez & Olson (2008), we set Per = 240, 193 and 126, which values correspond
to the concentrations nL3 = 3.6, 10.8 and 15.0, respectively. Values of Pet are fitted
to experimental measurements of the concentration distributions across the channel.
Values of Pet were found to be 120, 180 and 1000, respectively.

The computational domain consists of a two-dimensional rectangular channel, 200
fibre lengths long and 10 fibre lengths in height. In the z-direction, we use a 200-
point, uniform mesh of size �z = 0.05, while in the x-direction, we use a uniform
mesh of size �x = 2, resulting in a 100 × 200 mesh in the spatial domain. A uniform,
500 point mesh is used to discretize the φ-domain. The flow field in the channel is
computed using a commercial CFD software package, FLUENT (www.fluent.com).
The solution to the flow field is obtained using a two-dimensional, segregated, implicit
solver, with water at 20◦ C as the fluid phase. A no-slip condition is enforced along
the channel walls. A parabolic velocity profile is assigned at the channel inlet with a
Reynolds number, based on the peak velocity, Re = 500. Velocity field data used in
solving (2.13) are extracted along a single, vertical slice far enough downstream of
the inlet so that the flow is fully developed in the x-direction.

At distances greater than L/2 from the channel walls, (2.13) is discretized using
second-order accurate, centred differences in both z and φ spaces. This yields the
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Figure 4. A schematic of the two possible fibre configurations along the lower wall. A fibre
with (a) positive orientation at the wall and (b) negative orientation at the wall.

following system of equations to be solved at an arbitrary point, (φi, zj ), in the
central part of the channel:

1

Pet

ψi,j+1 − 2ψi,j + ψi,j−1

�z2
=

1

Per

ψi+1,j − 2ψi+1,j + ψi+1,j

�φ2

− φ̇i,j

ψi+1,j+1 − ψi+1,j−1

2�φ
− φ̇

�φ i,j

ψi+1,j . (2.22)

At the boundaries, specifically along the hypersurface separating the allowable from
the forbidden orientation state, (2.20) and (2.21) are discretized using forward
differences with respect to the wall-normal direction, both in position and in
orientation. This results in four regions that must be handled separately, each
corresponding to one of the two ends of a fibre touching either the top or bottom
wall in the channel; see figure 4.

At the lower wall, the spatial derivative is defined using forward differences as
follows:

∂ψ

∂z
=

ψi,j+1 − ψi,j

�z
. (2.23)

At the upper wall, the spatial derivative is defined using backward differences as
follows:

∂ψ

∂z
=

ψi,j − ψi,j−1

�z
. (2.24)

For a fibre in contact with the wall with positive orientation, the φ derivative is
defined as follows:

∂ψ

∂φ
=

ψi,j − ψi−1,j

�φ
. (2.25)

For a fibre in contact with the wall with negative orientation, the φ derivative is
defined as follows:

∂ψ

∂φ
=

ψi+1,j − ψi,j

�φ
. (2.26)

This yields the following system to be solved in the near-wall regions:
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(a) Region 1. Lower wall, fibre oriented with positive φ

− 1

Pet

ψi,j+1 − ψi,j

�z
+

(
φ̇i,jψi,j − 1

Per

ψi,j − ψi−1,j

�φ

)
= 0. (2.27)

(b) Region 2. Lower wall, fibre oriented with negative φ

− 1

Pet

ψi,j+1 − ψi,j

�z
+

(
φ̇i,jψi,j − 1

Per

ψi+1,j − ψi,j

�φ

)
= 0. (2.28)

(c) Region 3. Upper wall, fibre oriented with positive φ

− 1

Pet

ψi,j − ψi,j−1

�z
+

(
φ̇i,jψi,j − 1

Per

ψi,j − ψi−1,j

�φ

)
= 0. (2.29)

(d) Region 4. Upper wall, fibre oriented with negative φ

− 1

Pet

ψi,j − ψi,j−1

�z
+

(
φ̇i,jψi,j − 1

Per

ψi+1,j − ψi,j

�φ

)
. (2.30)

The pseudo-code for implementing the boundary conditions is given as follows:
(a) Beginning at zi = 0, for increasing i, check if zi is less than 1/2 or greater than

λ − (1/2).
(b) If true, compute φ1(zi) and φ2(zi) and apply the one-sided difference boundary

equation corresponding to the associated region.
(c) Pass over all other allowable φj according to (2.22).
(d) If (a) is false, solve (2.22) without boundary conditions.
With a uniform distribution, ψ is initialized, i.e. ψ = 1/π after which (2.13)–(2.21)

are solved iteratively with a Gauss–Seidel method until the relative change in the
solution on successive iterations is less than 10−6.

In order to couple the momentum equations to the fibre orientation equations, an
iterative procedure is used whereby the flow field is initially determined for the pure
fluid, that is flow with no fibres, after which (2.13) and (2.14) are solved using the
initial flow field data. The contribution of the fibre phase to the total stress on the
fluid is defined by (1.3) and is computed upon solving the orientation equations for ψ .
On the first iteration, a constant value for the concentration distribution n is assumed,
specifically n= nL3. This is used as an initial estimate for τ f , after which (2.5)–(2.10)
are solved exactly to give the variation of n(z) across the channel, which is then
used to better estimate τ f (z) across the channel. Once computed, the gradient of the
fibre stress is determined and then treated as a momentum source term in the fluid
momentum equations. This source term is implemented in FLUENT by means of a
user-defined function written in C. The fluid flow equations are then solved again to
produce a new flow field. On each iteration, the flow field is deemed to be converged
when the L2 norm of the solution residual is less than 10−6. The process is repeated
until the change in the L2 norm of the velocity vector between successive iterations is
less than 10−6. In general, a total of four iterations of each of the flow field equations,
and of the orientation equations, were required to obtain a fully converged solution.

Mesh resolution studies were performed on the numerical scheme described above
using L = 5 mm, r =50 and nL3 = 3.6. In general, mesh refinement in the x-direction
was not a concern for the numerical predictions because in all cases, the orientation
equations were solved far enough downstream such that the flow field was fully
developed. In order to evaluate numerical convergence of the orientation equations,
we compare components of the fourth-order orientation tensor, as defined by (1.4),
computed on three different uniform mesh resolutions summarized in table 1.
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Mesh �x �z �φ

50 × 100 × 100 0.02 0.1 0.0314
100 × 200 × 500 0.01 0.05 0.0063
100 × 400 × 500 0.01 0.025 0.0063

Table 1. Summary of meshes considered in the grid resolution study.
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Figure 5. Comparison of the fourth-order orientation tensor components obtained with the
three different mesh sizes: (a) 〈 p1 p2 p2 p1〉 and (b) 〈 p1 p2 p2 p2〉.

Specifically, we evaluate the components involved with the two-way, fluid/fibre
coupling, i.e. 〈 p1 p2 p2 p1〉 and 〈 p2 p2 p2 p2〉; see figure 5.

In order to evaluate the numerical convergence of the fluid flow equations, we
compare solutions obtained with the three spatial meshes described in table 1; see
figure 6. Again, we see that the difference in solutions obtained on each mesh is
extremely small.
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Figure 6. Comparison of the velocity profile obtained with the three different mesh sizes.

Although this analysis does not rigorously demonstrate the grid independence of
our numerical predictions, figures 5 and 6 do show that variation with respect to
the mesh sizes considered here is small. Therefore, we anticipate that our solution
will not differ significantly if computed on a larger mesh. In particular, the difference
between the finer two meshes is noticeably smaller than with the larger mesh. Given
this result, and the necessary trade-off between accuracy and computational cost, all
calculations and analysis that follow are made using the 100 × 200 × 500 mesh.

3. Experimental procedures
An index-of-refraction matched suspension, that is a suspension consisting of fluid

and fibre phases with identical indexes of refraction, is used to measure the orientation
distribution function in an experimental channel. With this type of system, the fibre
phase becomes indistinguishable from the fluid phase when observed under white light.
A small number of fibres (less than 1 % of the total number of fibres) are then silvered
and their motion is visualized in the flow using a digital camera in conjunction with
an automated fibre-tracking programme. The motion and orientation of the observed
fibres are assumed to represent the behaviour of all fibres within the suspension.

The experiments were performed in a rectangular cross-sectional Plexiglas cell of
size 50 × 255 × 75 mm (inlet height × length × width) proceeded by a hyperbolic
contracting section used to stabilize the flow and remove any crossflow; see figure 7.
Approximately 2.0 litre of suspension was required to fill the channel. Up- and
downstream of the channel, reservoirs are set at different heights to control the
pressure drop over the cell. The flow rate was set at 4.25 × 10−5 m3 s−1 using a gravity
feed on the inlet side.

Borosilicate glass rods (www.mosci.com) of dimensions 5 × 0.1 mm (length ×
diameter) were employed as the fibre phase. The glass fibres had a density of
approximately 2250 kg m−3. The index of refraction of these fibres was measured
commercially and found to be 1.4719 (±0.0005). Approximately 0.01 % of the fibres
in each suspension were silvered using Tollen’s solution, a mixture of 5 ml of 0.1 M
AgNO3 with ∼ 10 µl (5 drops) of 0.4 M NaOH. Before silvering, the fibres were
washed in detergent, rinsed in alcohol and then in distilled water. After silvering,
the fibres were washed to remove any loosely adsorbed AgNO3. We measured the
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Figure 7. A schematic diagram of the experimental test section. Fibre orientation is
observed immediately prior to the contracting section.

motion and orientation of three different monodispersed suspensions of concentration,
nL3 = 3.6, 10.8 and 15.0. Fibre orientation is observed immediately prior to the
contracting section. The Newtonian fluid used in this system was glycerin with a
density of 1260 kg m−3, a viscosity of 1.49 Pa s and an index of refraction of 1.470.
Fibre settling was not observed over the time scale of the experiment. Before each set of
experiments, the suspension was stirred for several minutes using a variable frequency
drive mixer (Midwest Mixing Corp.) until the fibres were uniformly distributed
throughout the suspension.

Our visualization system consisted of a progressive scan Basler A201b monochrome
CCD camera (10 bit grey scale and 1008 × 1016 pixel spatial resolution with a
maximum framing rate of 30 frames per second), mounted with an F-mount Micro-
NIKKOR 105 mm lens, positioned 60 cm in front of the observation section. The
imaged area was 50 × 50 mm with a resolution of approximately 50 µmpixel−1.

For particle tracking, the lens aperture and focus, backlight intensity and camera
exposure time were chosen so that the whole imaged volume was within the depth
of field of the lens. The camera was then re-focused in the middle of the xz-plane
in an attempt to avoid measuring the orientation of fibres near the sidewalls. The
Plexiglas cell was transilluminated using Schott–Fostec fibre optic dual backlight. The
orientation of each particle was calculated using an in-house fibre tracking algorithm
and consists of the following subroutines:

(a) Particle identification. Particle edges are detected using a Prewitt edge detection
scheme with the original greyscale image converted to a binary image. Particle edge
pixels are set to white (pixel value of 1) on a black background (pixel value 0).
Particles are then dilated, the interior regions are filled with white pixels and then
eroded back to their original size. The image now contains filled white particles on a
black background. Any object whose length and width are less than 10 pixels in size,
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(a) (b)

Figure 8. An example of (a) an original image and (b) a post-processed image with white
fibres on a black background.

or whose length and width are approximately equal, are assumed to be artifacts in
the image (e.g. air bubbles or non-fibrous debris) and are removed from the image.
In addition, stationary objects were removed from the images.

(b) Orientation distribution. The orientation angle of each fibre is measured relative
to the horizontal by computing the arctangent of the ratio �y/�x between the end
points of a fibre. The associated fibre length and centre of area are also recorded.
The flow region is then partitioned into 5 × 5 mm cells and the orientation angle of
each fibre whose centre of area lies within a particular cell is computed. There were
on average approximately 5000 tracer fibre observations at each location for each
experiment. Within each experimental cell, the distribution of fibre orientations was
normalized to unity. The reason for choosing this form of normalization is discussed
later.

Figure 8 shows an example of an original image and the same one after processing.
Approximately 10 000 images were recorded for each set of fibre concentrations.

4. Results and discussion
In this section, numerical predictions of the orientation distribution function are

compared with experimental observations across the channel gap. First, we present
our results on the orientation state of the suspension in the near-wall region, i.e. the
region less than L/2 from the channel walls. To reiterate, we argue that a rigorous
formulation of the boundary conditions on ψ must be enforced in this region, and
it will be shown that the no-flux boundary conditions described by (2.20) and (2.21)
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Figure 9. Comparison of the two-dimensional (solid line) and three-dimensional (dashed line)
orientation distribution functions with experimental measurements. The corresponding channel
positions are (a) z = 2.5 and (b) z = 7.5.

predict accurately the fibre orientation state in this region. A general orientation
analysis will also be performed for distances greater than L/2 from the walls where
all orientation states are physically possible and the system is well described by (2.13).
We follow this with a comparison of the velocity profiles and the concentration
profiles across the channel.

4.1. Orientation distribution

Before proceeding to the main findings of this section, we begin the analysis
by investigating the assumption of a two-dimensional fibre orientation model. To
reiterate, flow through the channel is assumed to be two-dimensional, and a planar
model of fibre orientation is considered where each fibre is assumed to be oriented in
the xy-plane with an orientation described by the single angle φ. While this is not true
in theory as the rotary diffusion term creates out-of-plane orientation in planar flows,
the character of the flow and orientation distribution will not be altered significantly,
and we feel that the results from our predictions will still show the key phenomena
in question. As a comparison, figure 9 shows the three-dimensional fibre orientation
distribution alongside the two-dimensional orientation distribution in the absence of
wall effects at two separate points in the channel, i.e. z = 2.5 and z = 7.5. Here, the
planar orientation distribution function ψp is extracted from the three-dimensional
orientation distribution function as follows:

ψp =

∫ π

0

ψ(φ, θ)sin(θ)dθ. (4.1)
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Figure 9 shows the main difference between the two-dimensional and three-
dimensional orientation distributions, namely that the two-dimensional orientation
distribution predicts a higher degree of alignment, i.e. the spread in the distribution
is found to be smaller compared to the three-dimensional distribution function. This
is explained by the fact that with the two-dimensional assumption, all of fibres are
confined to the orientation plane, hence a greater number of fibres align in the
principal direction of fibre orientation. The effect of the three-dimensional, out-of-
plane distribution is to increase the spread in the planar orientation distribution.
We do not feel that this small difference will significantly alter the character of
the predictions presented below. Also shown in figure 9 is a comparison with the
experimental measurements. The histogram of the orientation distribution function in
both parts of the channel is found to be smooth and clustered around a definite value,
namely φ ≈ 0.3 at z ≈ 2.5 and φ = −0.3 at z = −2.5. Here we also note a tendency for
the model to overpredict the peak in the orientation distribution, i.e. the mean fibre
orientation angle is predicted to be greater than is observed in the experiments.

We now turn our attention to the orientation distribution function at distances
less than L/2 from the channel walls. Shown in figure 10 is a comparison of the
numerical predictions with the experimental measurements. Here we compare results
for nL3 = 3.6; however, similar results were found for nL3 = 10.8 and 15.0. The model
agrees well with the experiments in this region, although it does overpredict fibre
orientation closest to the wall. The most notable observation is that the model is able
to capture the range of allowed orientation states in this region. Very close to the wall,
specifically at distances z � 0.1, figures 10(a) and 10(b) show that nearly all fibres
are aligned parallel to the wall, i.e. ψ is highly clustered about φ = 0, a result which
stems from the tight geometric constraint on fibre orientation in this region. Moving
slightly farther away from the wall, but still in the region z < (1/2), figure 10(c–e)
shows that the peak in ψ begins to shift towards positive values in φ, while the spread
in ψ begins to increase significantly. The increased spread in ψ indicates that fibres
have more freedom to rotate in this region and therefore assume a greater range of
orientations. However, the preferred direction of fibre orientation points away from
the wall. The model agrees very well with the experiments in this region and does an
excellent job of separating the allowed from the forbidden orientation states. Moving
farther from the wall, figure 10(f ) shows the point at which all orientation states are
theoretically allowable, i.e. at the point z = 1/2. Here, the peak of ψ corresponds to
a positive value in φ, which again indicates a tendency for fibres to point away from
the wall. Furthermore, since fibre orientation is no longer restricted geometrically by
the wall, and the spread in ψ encompasses all orientation states.

To fully characterize the fibre orientation distribution across the channel, we
consider two measures of the orientation distribution function, namely the mean
orientation angle, φ̄, and the orientation anisotropy, Aφ . The mean orientation angle
corresponds to the principal direction of fibre alignment, i.e. the angle at which
the majority of fibres are oriented. The orientation anisotropy corresponds to the
degree of fibre alignment about the principal direction of orientation. As a reference,
a value of Aφ equal to unity corresponds to a perfectly aligned suspension, e.g.
ψ = δ(φ − φ0), where δ is the Dirac delta-function. Conversely, a value of Aφ = 0.5
corresponds to a suspension that is in a fully random, or uniform orientation state,
e.g. ψ =1/π. The terms φ̄ and Aφ are defined, respectively, as follows:

φ̄ =

∫ π/2

−(π/2)

φ ψ(z, φ)dφ (4.2)
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Figure 10. The orientation distribution at various distances in the near-wall region. (a)
y/L → 0, (b) z = 0.1 (y/H = 0.01), (c) z = 0.2 (y/H = 0.02), (d ) z = 0.3 (y/H = 0.03), (e) z = 0.4
(y/H = 0.04), (f ) z = 0.5 (y/H = 0.05). The concentration shown here is nL3 = 3.6, the fibre
length is 5 mm and the aspect ratio is 50.

and

Aφ =

∫ π/2

−(π/2)

cos2φ ψ(z, φ)dφ. (4.3)

Figure 11 compares a prediction of the profile of φ̄ with experimental measurements,
where the error bars indicate the 95 % confidence interval. The concentration shown
here is nL3 = 15.0; however, similar results were found for nL3 = 3.6 and 10.8. Here
we see that in the lower half of the channel where z � 0.5, the mean direction of
fibre alignment is positive, i.e. fibres in the lower half channel tend to point away
from the lower wall towards the upper wall. Similarly, in the upper half channel
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Figure 11. Comparison of the mean orientation angle across the channel. The model
predictions are shown along with the experimental observations for nL3 = 15.0. The error
bars indicate the 95 % confidence interval.

where z � λ − 0.5, the mean direction of fibre alignment is negative, i.e. fibres in this
region point away from the upper wall and towards the lower wall. These findings
are due to the fact that fibre alignment is predominantly driven by local velocity
gradients. In the lower half channel, the velocity gradient, ∂u/∂y, is positive and
fibres tend to align in the positive direction. Similarly, in the upper half channel, the
velocity gradient is negative and fibres are aligned in the negative direction. Along
the centreline, the mean fibre orientation is at φ = 0, or parallel to the x-axis. At
distances less than L/2, the mean fibre orientation angle increases from φ̄ = 0 closest
to the wall, to φ̄ ≈ 0.1 rad at z = 0.5. Excellent agreement is found between the model
predictions and the experimental measurements in the near-wall region. Considerable
discrepancies are apparent outside of this near-wall region. These discrepancies will
be discussed below.

Figure 12 compares profiles of φ̄ predicted with and without the rigorous near-
wall treatment of ψ along with the experimental measurements, in the near-wall
region. Here, the effect of ignoring the rigorous boundary conditions on ψ results
in an overprediction of φ̄ near the walls. Non-physical values of φ̄ are predicted at
distances less than L/2 from the wall. However, this problem is corrected when a
rigorous near-wall treatment is considered in the model.

Profiles of Aφ are compared in figure 13, where the error bars indicate the 95 %
confidence interval. The model is able to give a good qualitative prediction of the
character of Aφ across the channel. Specifically, Aφ is at a maximum closest to the
channel walls where it tends towards a value of 1, indicating that all fibres in this
region are aligned parallel to the walls. Note that Aφ then decreases nonlinearly to
a minimum value at the centre of the channel where the suspension is at its most
random in orientation. The cusp in the profiles indicates the L/2 distance from the
wall. This finding reinforces the notion that the wall increases fibre alignment in the
near-wall region. This result agrees well with the experimental findings of Moses et al.
(2001) and Stover & Cohen (1990), where the wall was said to have a stabilizing effect
of fibre orientation at distances less than L/2. Close to the walls, the model agrees
quantitatively and qualitatively with the experimental observations. However, away
from the walls, the model only agrees in character and quantitative agreement is not
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Figure 12. Comparison of the mean orientation angle close to the channel wall. The model
predictions shown are computed with (—) and without (- - -) the wall boundary formulations
along with the experimental observations. The concentration shown here is nL3 = 15.0.

as strong. The quantitative ambiguities can most likely be accounted for by the fact
that we have assumed a planar orientation of fibres in the numerical model, i.e. fibre
alignment is assumed to be entirely in the xy-plane. However, in the experiments,
fibre alignment is not limited to the xy-plane, and fibres are free to rotate in the
out-of-plane direction. This is most certainly one major source of error.

The effect of increasing the fibre concentration appears as a reduction in Aφ across
the channel, particularly along the channel centreline. This result is due to the fact that
increasing the fibre concentration effectively increases the rotary diffusivity caused
by the fibre–fibre interactions. More specifically, with a greater number of fibres
confined to the same domain, the frequency of fibre–fibre interactions is increased
and the suspension tends towards a more random orientation state. This observation
has been previously reported by a number of different researchers (e.g. Stover, Koch, &
Cohen 1992; Rahnama et al. 1995b; Rahnama, Koch & Cohen 1995a; Krochaket al.
2008). The model also predicts an increase in Aφ as the concentration is increased;
however, this is expected since Per decreased with increase in fibre concentration,
i.e. Dr increases. It is interesting to note that the quantitative agreement between the
numerical predictions and the experimental measurements tends to improve as the
fibre concentration increases. This observation can be made for both φ̄ and Aφ . At
this point, the reader may also be questioning the strange, yet persistent oscillations
observed in both the plots of φ and Aφ . This issue will be discussed below; however,
it is important to first investigate the velocity distribution in the channel.

4.2. Velocity profiles

In this section, we present numerical estimates of the two-dimensional velocity
distribution arising from the suspension flow through the rectangular channel. Here
we show that by including the rigorous formulation of the near-wall effects on the
distribution function, we are able to improve the accuracy of the numerical predictions
significantly. We do so by comparing our estimates of the velocity profiles in the
channel with the experimental measurements of Xu & Aidun (2005). To reiterate, we
assign a parabolic velocity distribution at the channel inlet and allow the suspension
to evolve along the length of the channel where the fibre stress term, i.e. (1.3), is
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Figure 13. Comparison of the orientation anisotropy across the channel. The model
predictions are shown along with the experimental observations for (a) nL3 = 3.6, (b) nL3 = 10.8
and (c) nL3 = 15.0. The error bars indicate the 95 % confidence interval.
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Figure 14. Comparison of the predicted velocity profiles with experimental measurements
of Xu & Aidun (2005). The concentrations (numerical/experimental) shown here are
(a) nL3 = 0/3.6, (b) nL3 = 8/10.8 and (c) nL3 = 16/15. The squares (�) represent the
experimental measurements of Xu & Aidun (2005), the solid lines (—) indicate the numerical
predictions and the dotted lines (· · · ) indicate a Newtonian fluid without fibres.

included in the flow equations. The predicted velocity profiles are then extracted far
enough downstream such that the suspension has reached a fully developed state.
It should be pointed out that the concentration measured by Xu & Aidun (2005)
are not identical to those estimated by our calculations. However, the difference in
concentrations is small, and we feel that it is worth making this comparison.

Figure 14 shows that by implementing the rigorous near-wall treatment of ψ and
n, we are better able to predict the velocity profile in the channel. The improvement is
not significant for the lowest concentration, nL3 = 4. As seen in figure 14(a), the fibres
have almost no effect on the velocity profile. In this plot, we do not compare with any
experimental measurements because none were available at such a low concentration.
At nL3 = 10.8, we see that the velocity gradient close to the wall has increased; see
figure 14(b). Our calculations also show this increase in the velocity gradient close
to the wall. Near the channel centreline, the velocity profile coincides with that of a
Newtonian fluid, i.e. parabolic. At the highest concentration, i.e. nL3 � 15, we see a
significant change in the character of the velocity profile; see figure 14(c). Specifically,
the velocity gradient near the wall has increased considerably and a plug-like region
has formed away from the walls. Of course, it is clear that the model underpredicts
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both the size of the plug region and the magnitude of the near-wall velocity gradients.
The discrepancies found between the predicted and measured velocity profiles most
likely stem from two major factors. The first is that we are comparing predictions based
on a two-dimensional model of fibre orientation with measurements in which fibres
have three-dimensional orientation. The second probable cause for the discrepancy is
that the fibres used in the experiments of Xu & Aidun were flexible. This may lead
to the formation of coherent, mechanically entangled flocs; see for example Martinez
et al. (2001). In spite of this, we do see an improvement in the numerical predictions
of the velocity distribution when the wall effects are considered in the model.

We are now in a position to comment on the oscillations that appear in the
measurements of both φ̄ and Aφ across the channel. This is believed to be an
indication that fibres are beginning to flocculate despite the fact that the fibre
concentration is below the flocculation limit of nL3 = 32 (e.g. Martinez et al. 2001;
Krochaket al. 2008). We put forth the argument that fibres are segregating into
small flocs, where the orientation state of each floc may differ slightly from that of
neighbouring flocs. This argument can be supported by the velocity profiles of the
flowing suspension. In particular, one important consequence of the formation of
a plug region is that the velocity gradients vanish almost completely in this region
along with any fibre alignment mechanism. Therefore, the behaviour of fibres in this
region is determined entirely by the hydrodynamic fibre–fibre interactions, which may
increase the likelihood of fibre flocculation.

4.3. Concentration distribution

We now compare concentration profiles in the suspension flow across the channel.
In the experiments, it is assumed that the number of observed tracer fibres at
an observation point is indicative of the fibre concentration at that point. In
the theory, the normalized concentration distribution, η(z), is defined by (2.11),
where concentration-dependent values of Pet are fitted to the experimental data.
Values of Pet and Ld (based on the peak near-wall fibre stress) were found to be
0.83 . . . , 0.55 . . . , 0.1000 and Ld =5.38 × 10−6, 5.97 × 10−6, 8.2 × 10−6 for the bulk
concentrations nL3 = 3.6, 10.8 and 15.0, respectively. It should stressed that these
values are fitting parameters that allow obtaining an exact solution to (2.5). A
comparison of the predicted and experimentally observed concentration profiles is
shown in figure 15. A conservation condition is applied on both the theoretical and
experimental concentration distributions. Specifically, the concentration distributions
are renormalized such that the integral of the concentration distribution across the
channel equals the total number of expected fibres divided by nL3. Schiek & Shaqfeh
(1995) show that this normalization condition can be expressed mathematically as
follows:

1

nL3

∫ λ

0

n(z) dz = λ (4.4)

or simply ∫ λ

0

η(z) dz = λ. (4.5)

Two general trends are shown in figure 15. Specifically, as the concentration increases,
the size of the depletion region decreases and the concentration profile becomes
increasingly constant. That is, the fibres in the low concentration suspension tend
to migrate towards the middle of the channel, while the concentration distribution
becomes more and more uniform with increasing concentration. This phenomenon
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Figure 15. A comparison of the predicted and measured concentration profiles across the
channel. The model predictions are shown as (—) along with the experimental observations
(�): (a) nL3 = 3.6, (b) nL3 = 10.8 and (c) nL3 = 15.0.
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supports the fibre migration theory that states that fibres migrate from regions of
high to low shear stresses (e.g. Leighton & Acrivos 1987; Phillips et al. 1992; Ma
& Graham 2005. An inspection of the velocity profiles, i.e. figure 14, shows that
as the concentration increases, the velocity profile changes from parabolic to plug-
like. For the parabolic velocity profile, the lowest shear stress occurs exactly along
the centreline; hence, fibre concentration is greatest along the centreline. However,
as the concentration increases, the shear stress in the central part of the channel
decreases and fibre migration is reduced significantly. The reader will also notice
the rather large oscillations in the experimental concentration distributions. These
oscillations are similar to those observed in the profiles of φ̄ and Aφ and, here too,
are an indication that fibres are beginning to flocculate. In fact, it is believed that
the oscillations observed in the fibre concentration profiles support the argument that
fibres are flocculating.

There are still a number of discrepancies between the model predictions and the
experimental measurements, most notably, the model overpredicts φ̄ and Aφ away
from the channel walls. This is likely to be due to the fact that, in this work, we have
considered a two-dimensional model of fibre orientation. However, in the experiments,
the fibres have three-dimensional orientation and are not limited to rotate solely in the
xy-plane. While three-dimensional fibre orientation should not change the character
of the fibre behaviour, it will certainly affect quantitative values of both φ̄ and Aφ .
One possible cause for discrepancies in the near-wall region may be explained by
the flipping fibre phenomenon, and the frequency of fibre flipping in relation to the
suspension concentration. More specifically, for the lower concentration suspension,
fibres entering the near-wall region were observed to flip by 180◦ (or several multiples
thereof), more often compared to the higher concentration suspension. At the low
concentration, these flipping fibres were observed to eventually drift to a distance well
in excess of L/2 from the wall, after which they assumed a stable fibre orientation. At
the higher concentration, not only were there far fewer occurrences of flipping fibres,
but those which did flip, often remained much closer to the wall upon stabilizing,
i.e. approximately L/2 from the wall. Similar observations have also been made by
Stover & Cohen (1990) and Moses et al. (2001); however, here we find that at low
concentrations, fibres drift out to distances on the order L after undergoing this
pole-vaulting action, whereas Stover & Cohen (1990) and Moses et al. (2001) found
that fibres drifted to a distance of approximately L/2 from the wall, even in the dilute
limit. Another possible explanation for this observation is that, at low concentrations,
fibres have fewer neighbours so that flipping fibres are less likely to mechanically
interact with other fibres, allowing them the freedom to drift farther away from the
walls. Capturing such detailed fibre behaviour is one inherent deficiency with the
Eulerian approach to fibre suspension modelling. Nonetheless, the Eulerian model
used here is able to predict these linear concentration profiles, which could arguably
result from the flipping fibre phenomenon.

5. Conclusion
A numerical model has been presented to predict the orientation and concentration

states of rigid fibre suspensions in a rectangular channel flow. A rigorous formulation
of the wall boundary conditions has been implemented in the model, allowing accurate
predictions of fibre orientation across the entire channel and up to the channel walls.
Hydrodynamic fibre–wall interactions have also been considered causing fibres to
migrate from regions of high to low shear stresses. Measurements of fibre orientation
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and concentration were carried out in an experimental device in order to validate
the model. Good qualitative agreement was found between the model predictions
and the experimental measurements across the entire channel. The model agreed
particularly well in the near-wall region, both qualitatively and quantitatively. Away
from the channel walls, good qualitative agreement was shown with the quantitative
discrepancies being attributed to flocculation and to our neglecting the out-of-plane
fibre orientation in the numerical model.

Estimates of the velocity distributions of fibre suspension flow through the channel
have been made using a two-way coupled model of the suspension flow, and
predictions made with a rigorous treatment of near-wall interactions are compared
to the experimental measurements of Xu & Aidun (2005). It has been shown that
by considering both the rigorous no-flux boundary conditions on the orientation
distribution function, along with hydrodynamic wall interactions for the concentration
distribution, significant improvements can be made to estimates of the velocity profile.
It is further argued that shortcomings of the model stem from fibre flocculation and
mechanical entanglement, two phenomena that cannot be described with the model
presented here.

Concentration measurements have been made in the channel using an index-
of-refraction matched suspension. Both the predicted and measured concentration
profiles clearly showed a nonlinear increase in fibre concentration from the channel
wall, reaching a maximum value near the centre of the channel. At low concentration,
a clearly defined maximum in concentration was found along the channel centreline.
As the concentration increased, the concentration distribution became increasingly
uniform across the channel and the size of the depletion zone decreased significantly.
Good agreement was shown between the model predictions and the experimental
measurements.
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